React
Next.js
TypeScript
Tailwind
AI
Node
</>
tech-icon
tech-icon
tech-icon
tech-icon

Diabetes Prediction Model

Machine Learning project to diagnose patients based on clinical metrics. Performed extensive Exploratory Data Analysis (EDA) and cleaning using Pandas/NumPy. Benchmarked algorithms including KNN and Logistic Regression. Achieved 98% accuracy using a Random Forest Classifier to distinguish between Non-Diabetic, Pre-Diabetic, and Diabetic patients.

Tech Stack

PythonGoogle ColabPandasNumPyScikit-Learn

Key Features

  • 98% accuracy with Random Forest Classifier
  • Extensive EDA and data cleaning
  • Benchmarking multiple algorithms (KNN, Logistic Regression)

Gallery

No Images Available
JAVAJAVA
PYTHONPYTHON
REACT.JSREACT.JS
NEXT.JSNEXT.JS
GOOGLE GEMINIGOOGLE GEMINI
SPRING BOOTSPRING BOOT
DOCKERDOCKER
TYPESCRIPTTYPESCRIPT
NODE.JSNODE.JS
TAILWINDTAILWIND
POSTGRESQLPOSTGRESQL
RAG AI
JAVAJAVA
PYTHONPYTHON
REACT.JSREACT.JS
NEXT.JSNEXT.JS
GOOGLE GEMINIGOOGLE GEMINI
SPRING BOOTSPRING BOOT
DOCKERDOCKER
TYPESCRIPTTYPESCRIPT
NODE.JSNODE.JS
TAILWINDTAILWIND
POSTGRESQLPOSTGRESQL
RAG AI